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IDENTIFICATION OF DYNAMIC STIFFNESS OF BALL BEARING
JOINTS USING SENSITIVITY ANALYSIS

Wan-Tack Rim*, Kwang-Joon Kim* and Chong-Won Lee**
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Natural frequencies are used to identify the joint stiffness of a shaft-bearing system, where the shaft is assumed as a Rayleigh
beam and the bearing as a linear spring. The eigenvalues for the case of uniform circular shaft are derived in a rigorous manner
in terms of nondimensionalized parameters for the location of bearngs, bearing stiffness, and slenderness of the shaft. Then,
sensitivities of the eigenvalues are calculated with respect to the stiffness ratio of shaft and bearing and the bearing location. Based
upon these sensitivity charts, an iterative procedure is proposed to identify the bearing stiffness in an optimum sense. The step by
step procedure is illustrated through a case study for a simple shaft-bearing system, where the stiffness of a set of ball bearings

is successfully identified.
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1. INTRODUCTION

It is often necessary to predict the dynamic behavior of a
mechanical system at the design stage in order that the
system may be operated in dynamically favorable conditions
once it has been manufactured. So far dynamic analysis of
solid mechanical components has been very successful owing
to advanced computer softwares, e.g.,, FEM programs, while
that of a whole svstem has not been mainly due to the lack of
information for the dynamic properties on mechanical joints
constructed by bearings, bolts and welding. In this aspect,
hence, many articles have been published for the last decade
with regard to the identification of the dynamic properties of
the above mentioned mechanical joints (Tlusty and Moriwa-
ki, 1976 ; Yoshimura and Okushima, 1977 ; Choi, 1987),

The general practice for the identification of bearing joints
was to express a system with bearing joints by a mathemati-
cal model and to estimate the joint properties somehow by
comparing the predictions of the dynamic properties/behav-
ior of the whole system with the experimental measurements
(Stone, 1982). The comparison was based upon modal param-
eters or forced responses or any other properties. The modal
parameters here may mean natural frequencies only or may
include damping ratios and mode shape vectors. Although it
is generally agreed that more experimental measurements
will make the parameter estimation more reliable, its effec-
tiveness is surely dependent upon the accuracy of the mea-
sured results. Admitting that accurate estimation of natural
frequencies is far easier than of damping ratios or mode

shapes in the experimental method, and considering
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that natural frequencies are more directly coupled to the
critical speed of the rotor-bearing system. the use of the
measured natural frequencies alone, not together with the
other modal parementrs, can be justified by arranging the test
set-up in such a way that the natural frequencies are most
sensitive to the bearing stiffness.

In this paper a stationary shaft-bearing system is analyzed
by assuming that the shaft be a Rayleigh beam and the
bearing act as a linear spring. The eigenvalues are derived in
a rigorous manner for the case of uniform circular shaft in
terms of nondimensionalized parameters for the location of
bearings, bearing stiffness, and slenderness of the shaft.
Subsequently sensitivities of the eigenvalues are calculated
with respect to ( i ) the stiffness ratio of shaft and bearing and
(ii) the bearig location. Based upon these sensitivity charts
and iterative procedure is proposed to identify the bearing
stiffness in an optimum sense. The step by step procedure will
be illustrated through a case study for a simple shaft-bearing
system, where the stiffness of a set of ball bearings is success-
fully estimated.

2. FORMULATION OF ELGNVALUE
PROBLEMS

Although the case study in the later part of this paper will
be made on a stationary system because of difficulties in
experimentation, in this section, the eigenvalue problem is
formulated for a rotating system which is closer to a real
situation.

The equations of motion of a rotating shaft-bearing system,
where the shaft is assumed to be a Rayleigh beam and each
bearing support a linear spring, are given by :
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with constraint conditions at each bearing support as below :
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where
U(Z, )=X(Z, t)+;Y(Z, t): Deformation of the shaft
P(Z.t) : External force

A(Z, t) :Cross-sectional area of the shaft

) : Density of the shaft material

J(Z) : Diametric mass moment of inertia
Jo(Z) : Polar mass moment of inertia
EI(Z) : Flexural stifffness of the shaft
o(2) : Rotating speed of the shaft

n : Number of bearing support

Z; : Location of the i-th bearing support
K: : Stiffness of the i-th bearing support
= : Small distance (€ Z;)

To make the analysis simple, the model as shown in Fig. 1
is considered here, where the swhaft with uniform cross-
sectional area is supported symmetrically by two identical
bearings and there are no external force acting on the shaft.
The above Egs.(1, 2) then can be re-expressed in nondimen-
sionalized form as below :
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in terms of nondimensional papameters as follows:

u=U/? z2=27Z/¢ r=t/{mé*/ET}'?
w?=pR*Q*/E k=K{¢*/EI r=R/2¢

where k denotes the stiffness ratio of the bearing and shaft,
7 the slenderness ratio of the shaft, ¢ a small number (K1),
and /=1, 2.

Solutions of Egs.(3, 4) for free boundary conditions at both
ends can be easily obtained by dividing the system into theree
sections(Hong, 1989) :

0<z<z), 21£€2<2, and 2,<z2<1.0

and by imposing the following conditions :
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Fig. 1 Idealized model of a shaft-bering system

at z=0 ; w"=0,—7%'+w"” +jwi." =0
at z=z21 ; wiT U, =, w”=u”
" =u" +ku:
at z2=2z; ; U= Us, U =us’, u"=us"
" = us” + kus (6)
at z=1 ; w"=0,~7%u" + u" +jwits”

on the solution of Eq.(3) which is assumed to take following
form :

lfor 0<z<z2,
ui(z, r)=Vie'%e”, i=| 2 for z::<2< 2z, (7
3 for z;<z<1.

Substitution of Eq.(7) into the Eq.(3) yields a characteristic
equation as follows:

A+ (2P —wy) A2 — V2 =0 (8)

from which the sapcial characteristic value A can be derived
in terms of the other parameters as follows.

/i:i/lly i‘AzZO (9)

whereo both A, and A, are positive and given respectively
by :

A= =) )2+ {(72V25~wy)2/4+uZ}l/z]llZ
Az=[— (r2V*—wv) [2+ {(#r* V2 — wv) 2/4+ V?}3]12 (10)

By substituting the Egs. (7, 9, 10) into the boundary and
constratint conditions given by the Eq. (6), an eigenvalue
problem can be formulated as follows:

(cl{Aa)={o} (11)

where [Clis a 12X 12 matrix constructed with the character-
stic parameters and {A} a constant 12X1 column vector
which is related to the constant coefficients V,’s in the Eq.
(7). Details of this are explained in the APPENDIX. The
eigenvalues, hence, can be obtained by solving the following
equation :

Det[C]=0 (12)

3. SENSITIVITY ANALYSIS

Now the sensitivity of the eigenvalue with respect to the
two parameters, i.e., stiffness ratio of the shaft and bearing,
defined as f in Eq.(5), and bearing location, defined by :

Q=22 &1 (13)

is discussed. There are several methods to determine the
sensitivity (Fox and Kappor, 1968 ; Adelman and haftka,
1986), one of which, a numerical method, was used in this
study to calculate the mean change rate of the eigenvalue to
each parameter.

Figure 2(a) shows the variation of the eigenvalue y with
respect to k and o for the case of the stationary shaft-bearing
system, i.e., @ =0, from which the sensitivity of the eigenvalue
was calculated as shown in Figs.2(b) and 2(¢). Fig. 2(b) indicates
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Fig. 2 (a) Eignvalues when ¢ and k varies, (b) Sensitivity of eigenvalues with respect to stiffness parameter £,
(c) Sensitivity of eigenvaiues with respect to location parameter o

that the sensitivity is relatively high when the stiffness ratio
is low(10 to 100) regardless of the location parameter for the
first mode and that the situations for the first mode and that
the situations for the second and third mode are similar. Fig
2c, however, shows that the sensitivity with respect to the
location parameter takes rather complicated shapes depend-
ing upon the stiffness ratio and the mode.

It is desirable from the practical point of view that the
sensitivity with respect to the stiffness ratio be maximum
while the one with respect to the bearing location be mini-
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Fig. 3 Process flow for searching bearing stiffness

mum because the assumption of the point contact at the
bearing support may not be true and the exact location of the
point contact is very difficult. By considerig this point, a
systematic procedure to estimate the stiffness of the bearing
support by the measurement of natural frequencies is suggest-
ed as follows and the flow chart is shown in Fig. 3.

(1) A shaft of a given dimension is installed symmetri-
cally onto two identical bearings as shown in Fig. 1 for a
chosen value of the location parameter.

(2) Natural frequencies are measured from experiments
and nondimensional eigenvalues are derved using the Eq.(5).
The stiffness parameters are subsequently obtained using the
chart as shown in Fig. 2(a) for every mode. Then sensitivities
of each eigenvalue with respect to the stiffness and location
parameters are investigated. If all of the following conditions
are satisfied. ’

- small variation in k;

+ high sensitivity with respect to £;

« low sensitivity with respect to a;
then go to step (5). Otherwise, go to step(3).

(3) Adjust the location parameter ¢ in such a way that a
weighted sum of the sensitivity with respect to ¢ for each
mode may be minimized.

(4) Repeat step(2). If satisfied, go to step(5). If not satis-
fied, then change the shaft length and go to step(1),

(5) Take the weighted average of the stiffness parame-
ters by considering the sensitivities ;-th respect to the stiff-
ness and location parameters as follows:

k=3 Wik:
where
__Ski/|Sal
;SU/ISH,
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Table 1 Identified joint stiffness at ¢=750mm, #=0.6

Natural Eigen Stiffness Bearing Av/dk dv/dk W
frequency value parameter stiffness

24] Hz 21.87 10000 2.0x10® 1.1x10°¢ —18.31 0.002

478 Hz 4425 4380 8.7x107 4.1x10* 133.47 0.118

691 Hz 62.87 6220 1.2x108 1.8x1072 78.98 0.879

Weighted stiffness parameter 6010
Weighted bearing stiffness 1.2x10® N/m

4. A CASE STUDY

Although the procedure in the previous section is rigorous
and systematic, decision making is so subjective. Hence, in
this case study, the decision was made to some extent based
on engineering senses.

A shaft of diameter 30mm and length 750mm was installed
onto a pair of ball bearings of width 30mm. Based on some
preliminary measurements and estimations, ¢ =0.6 was cho-
sen. The results for this condition are shown in Table 1,
where it can be seen that differences among the stiffness
parameters are rather significant and the sensitivity with
respect to the stiffness for the lower modes is so low.

According to the procedure in Fig.3, a shaft of diameter
30mm, length 375mm was installed onto the same bearing.
Reduction of the shaft length resulted in the decrease of the
stiffness parameter and increase of the sensitivity with
respect to the stiffness parameter as shown in Fig 2b. The
location parameter was chosen initially as 0.9 so that the
natural frequencies of the system may be well separated. The
results for this condition are shown in Fig.5 and Table 2.
From Table 2, it can be seen that the sensitivities with respect
to the location parameter for 3rd mode was so high, and the
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Fig. 4 Transfer fuinction from experiment
When ¢=750mm R=15mm a=0.6

differences among the stiffness parameter were more signifi-
cant than cases of ¢=750mm, while the sensitivities with
respect to the stiffness parameter were improved.
Subsequently, the location parameter ¢ for each mode. The
results for this condition are shown in Fig.6 and Table 3. As
shown in Table 3, differences among the stiffness parameters
were much smaller than those of the previous experiments,
the sensitivities with respect to the stiffness parameter were
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Fig. 5 Transfer function from experiment
When ¢=375mm R=15mm =09
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Fig. 6 Transfer function from experiment
When ¢=375mm R=15mm ¢=0.4

Table 2 Identified joint stiffness at £=375mm, =09

Natural Eigen Stiffness Bearing dv/ dk Av/ Ak W
frequency value parameter stiffness
495 Hz 11.24 441 7.0x107 39x10- —22.13 0.361
1769 Hz 40.16 712 1.1x10° 1.3x10-2 —59.02 0.442
4045 Hz 91.82 3450 5.5x10® 1.1x102 —114.06 0.197

Weighted stiffness parameter 1156
Weighted bearing stiffness 1.8 x10® N/m
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Table 3 Identified joint stiffness at /=375mm, o¢=0.4
Natural Eigen Stiffness Bearing Adv/dk Av/ Ak W
frequency value parameter stiffness
788 Hz 17.89 619 9.8 x107 8.7%x1073 40.95 0.290
837 Hz 19.00 614 9.7 %107 31x1073 33.65 0.124
1625 Hz 36.89 517 8.2x107 2.9x10°2 —66.91 0.586

Weighted stiffness parameter 558
Weighted bearing stiffness 8.8 x10" N/m

relatively high, and the sensitivities with respect to the loca-
tion parameter were low. The weighted average stiffnes was
8.8x10” N/m.

5. CONCLUDING REMARKS

A method has been proposed for the identification of the
bearing stiffness, which basically uses simulation charts of
the eigen frequencies and their sensitiviteres with respect to
the system parameters for a nondimensionalized shaft-
bearing system. The proposed method yields very reliable
results because

(1) measurements are made only on the natural fre-
quencies,

(2) experimental set-up is arranged so that sensitivites
with respect to the system parameters are optimized.

(3) and estimates of the stiffness are obtained in such a
way that they may be consistent regardless of the dynamic
mode chosen.

Through a case sutdy, the usefulness of the proposed proce-
dure was illustrated and it was found that a great care is
required especially in selecting the location of the bearings
along the shaft.

In this study, however, an objective way of decision making
for satisfaction or not and the reasons why the estimates of
stiffness from different dynamic modes where inconsistent
were not discussed in a concrete manner, which are left for
further study.
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APPENDIX

Substituting Eq.(9)into Eq.(7)yields

w(z, t)=[AncosMiz+ AizsinAiz+ AiscoshAzz

+A.~4sinh/lzz]e” (Al)
wherer the subscript ; in A,; indicates the specified region
shown in Fig.1. Substituting Eq.(A1) in to Eq.(6) yields. Eq.(11)
and {4}, [Clare given by :

2AsA 34}
ZoA%Sinh/].zZo

(A2)

(AlsinA 20— 72V A sindi 2o+ wyAicos A1 20)

— AdcosN120+ 7*v* Aicos A1 zo+ wyAisinA, 2o)
AdsinhA,zo+ r?v2 Asinh A, 20— wyAicosh Az zo)
AjcoshAz0+ r?v2 Ascosh Az z0— wyAjsinh A, zo)

(A3)

[cosA1z; sin/1z1 coshA,z; sinh A,z
—cos/zy —sin/iz; —coshA,z, —sinhA,z;

00 0 0

[—/hsin/hzx AicosAiza A,sinh A,z AzcoshA,z;
AisinAd; 2, —AwcosAr 21 — A,8inh A,z — AzcoshA,2,
00 0 0]

[—A%cosAizy — AfsinAz AzcoshA,z, AZsinhA,z,
AfcosAizy A?sinAiz, — A3cosh A,z — Ajsinh .z,
0 0 0 0]

[A}sinA, 21 ~kcosA, 2,
A%SiﬂhAzZl - kCOShAzZl

— AlcosA1z1—ksinAiz
— AjcoshA,z,—ksinhA. 2,
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—AlsinA, 2,

00 0 0] AfcosMiz: — AjsinhA, 2z, AjcoshA.z,
(0 o 00
cosA,z: sinA,z: coshA;z; sinhA;z,
—cos/i2: —sindizz  —coshA;z,  —sinhA:z,)
0 0 0 0
- A;ssin/hzz /11COSA122 AzSil’lhAzZz AZCOShAzZZ
AssinA, 22 —Awcoshize  —AssinhAzz, — AscoshA,ze)
O oo o0
— AfcoshA, z, —AfsinAiz:  AjcoshAzz. isinhA.z.
tcosAz2 AlsinA; 22 — AjcoshA,z, — A%sinh A,z
0O o000
AlsinAiz:—kcosA,z2 — Afcos A1z, —ksinA, z.
AjsinhA;z.—kcosh A, 2z, AjcoshAzz, —ksinhA,z;
—~ AjsinA1z2 AjcosMize  — AlsinhA,z, A3coshA,z,)
o oo o0oo0o000
— AfcosAizs — AlsinA;zs A%coshA%Za AZsinh ;2]

0 oo O0O0O0CTO0OTO0
(AlsinA.z:—r*V*AisinA, 23+ wvAicosA1z,)

(— AdcosAiz3+ r*v2Aicos A 23+ wvAisinA, zs)
(AsinhA,zs+ 212 Assinh A, 2. — wyAZcosh A, 2s)
(AdcoshA,zs+ 7202 Axcosh Arza— wyAlsinh A, z5) 1]
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